See De Morgan's law on Wiktionary
{ "etymology_text": "Named after the British mathematician and logician Augustus De Morgan (1806–1871), who first formulated the laws in formal propositional logic.", "forms": [ { "form": "De Morgan's laws", "tags": [ "plural" ] } ], "head_templates": [ { "args": { "head": "De Morgan's law" }, "expansion": "De Morgan's law (plural De Morgan's laws)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ { "kind": "topical", "langcode": "en", "name": "Logic", "orig": "en:Logic", "parents": [ "Formal sciences", "Philosophy", "Sciences", "All topics", "Fundamental" ], "source": "w" }, { "kind": "topical", "langcode": "en", "name": "Mathematics", "orig": "en:Mathematics", "parents": [ "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" }, { "_dis": "29 29 9 9 25", "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w+disamb" }, { "_dis": "38 38 5 5 15", "kind": "other", "name": "Entries with translation boxes", "parents": [], "source": "w+disamb" }, { "_dis": "27 27 12 12 22", "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w+disamb" }, { "_dis": "28 28 8 8 29", "kind": "other", "name": "Pages with entries", "parents": [], "source": "w+disamb" }, { "_dis": "28 28 8 8 29", "kind": "other", "name": "Terms with Dutch translations", "parents": [], "source": "w+disamb" }, { "_dis": "31 31 5 5 28", "kind": "other", "name": "Terms with Finnish translations", "parents": [], "source": "w+disamb" }, { "_dis": "31 31 6 6 27", "kind": "other", "name": "Terms with German translations", "parents": [], "source": "w+disamb" } ], "examples": [ { "ref": "2004 August, J. L. Schellenberg, “The Atheist’s Free Will Offence”, in International Journal for Philosophy of Religion, volume 56, № 1, pages 11-12:", "text": "Let ‘F’ stand for the state of affairs that consists in finite persons possessing and exercising free will. Let ‘p’ stand for ‘God exists’; ‘q’ for ‘F obtains’; ‘r’ for ‘F poses a serious risk of evil’; and ‘s’ for ‘There is no option available to God that counters F.’ With this in place, the argument may be formalized as follows:\n(1) [(p & q) & r] → s Premiss\n(2) ~s Premiss\n(3) ~[(p & q) & r] 1, 2 MT\n(4) ~(p & q) v ~r 3 DM\n(5) r Premiss\n(6) ~(p & q) 4, 5 DS\n(7) ~p v ~q 6 DM\n(3) follows from the conjunction of (1) and (2) by modus tollens; De Morgan’s law applied to (3) yields (4); (4) and (5) together lead to (6) by disjunctive syllogism; and another application of De Morgan’s law takes us from (6) to the final conclusion, according to which either God exists or there is free will (but not both).", "type": "quote" } ], "glosses": [ "Either of two laws in formal logic which state that:", "The negation of a conjunction is the disjunction of the negations; expressed in propositional logic as: ¬ (𝑝 ∧ 𝑞) ⇔ (¬ 𝑝) ∨ (¬ 𝑞)" ], "id": "en-De_Morgan's_law-en-noun-CnPE8vXX", "links": [ [ "mathematics", "mathematics" ], [ "logic", "logic" ], [ "logic", "logic#English" ], [ "negation", "negation#English" ], [ "conjunction", "conjunction#English" ], [ "disjunction", "disjunction#English" ] ], "raw_glosses": [ "(mathematics, logic) Either of two laws in formal logic which state that:", "The negation of a conjunction is the disjunction of the negations; expressed in propositional logic as: ¬ (𝑝 ∧ 𝑞) ⇔ (¬ 𝑝) ∨ (¬ 𝑞)" ], "topics": [ "human-sciences", "logic", "mathematics", "philosophy", "sciences" ] }, { "categories": [ { "kind": "topical", "langcode": "en", "name": "Logic", "orig": "en:Logic", "parents": [ "Formal sciences", "Philosophy", "Sciences", "All topics", "Fundamental" ], "source": "w" }, { "kind": "topical", "langcode": "en", "name": "Mathematics", "orig": "en:Mathematics", "parents": [ "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" }, { "_dis": "29 29 9 9 25", "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w+disamb" }, { "_dis": "38 38 5 5 15", "kind": "other", "name": "Entries with translation boxes", "parents": [], "source": "w+disamb" }, { "_dis": "27 27 12 12 22", "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w+disamb" }, { "_dis": "28 28 8 8 29", "kind": "other", "name": "Pages with entries", "parents": [], "source": "w+disamb" }, { "_dis": "28 28 8 8 29", "kind": "other", "name": "Terms with Dutch translations", "parents": [], "source": "w+disamb" }, { "_dis": "31 31 5 5 28", "kind": "other", "name": "Terms with Finnish translations", "parents": [], "source": "w+disamb" }, { "_dis": "31 31 6 6 27", "kind": "other", "name": "Terms with German translations", "parents": [], "source": "w+disamb" } ], "glosses": [ "Either of two laws in formal logic which state that:", "The negation of a disjunction is the conjunction of the negations; expressed in propositional logic as: ¬ (𝑝 ∨ 𝑞) ⇔ (¬ 𝑝) ∧ (¬ 𝑞)" ], "id": "en-De_Morgan's_law-en-noun-vo80-DKR", "links": [ [ "mathematics", "mathematics" ], [ "logic", "logic" ], [ "logic", "logic#English" ] ], "raw_glosses": [ "(mathematics, logic) Either of two laws in formal logic which state that:", "The negation of a disjunction is the conjunction of the negations; expressed in propositional logic as: ¬ (𝑝 ∨ 𝑞) ⇔ (¬ 𝑝) ∧ (¬ 𝑞)" ], "topics": [ "human-sciences", "logic", "mathematics", "philosophy", "sciences" ] }, { "categories": [ { "kind": "topical", "langcode": "en", "name": "Mathematics", "orig": "en:Mathematics", "parents": [ "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" }, { "_dis": "27 27 12 12 22", "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w+disamb" } ], "glosses": [ "Either of two laws in set theory which state that:", "The complement of a union is the intersection of the complements; as expressed by: (𝐴 ∪ 𝐵)′ = 𝐴′ ∩ 𝐵′" ], "id": "en-De_Morgan's_law-en-noun-3g-ivh2v", "links": [ [ "mathematics", "mathematics" ], [ "set theory", "set theory#English" ], [ "complement", "complement#English" ], [ "union", "union#English" ], [ "intersection", "intersection#English" ] ], "raw_glosses": [ "(mathematics) Either of two laws in set theory which state that:", "The complement of a union is the intersection of the complements; as expressed by: (𝐴 ∪ 𝐵)′ = 𝐴′ ∩ 𝐵′" ], "topics": [ "mathematics", "sciences" ] }, { "categories": [ { "kind": "topical", "langcode": "en", "name": "Mathematics", "orig": "en:Mathematics", "parents": [ "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" }, { "_dis": "27 27 12 12 22", "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w+disamb" } ], "glosses": [ "Either of two laws in set theory which state that:", "The complement of an intersection is the union of the complements; as expressed by: (𝐴 ∩ 𝐵)′ = 𝐴′ ∪ 𝐵′" ], "id": "en-De_Morgan's_law-en-noun-7UZ1ijK3", "links": [ [ "mathematics", "mathematics" ], [ "set theory", "set theory#English" ] ], "raw_glosses": [ "(mathematics) Either of two laws in set theory which state that:", "The complement of an intersection is the union of the complements; as expressed by: (𝐴 ∩ 𝐵)′ = 𝐴′ ∪ 𝐵′" ], "topics": [ "mathematics", "sciences" ] }, { "categories": [ { "kind": "topical", "langcode": "en", "name": "Mathematics", "orig": "en:Mathematics", "parents": [ "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" }, { "_dis": "29 29 9 9 25", "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w+disamb" }, { "_dis": "38 38 5 5 15", "kind": "other", "name": "Entries with translation boxes", "parents": [], "source": "w+disamb" }, { "_dis": "27 27 12 12 22", "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w+disamb" }, { "_dis": "28 28 8 8 29", "kind": "other", "name": "Pages with entries", "parents": [], "source": "w+disamb" }, { "_dis": "25 25 9 9 32", "kind": "other", "name": "Terms with Czech translations", "parents": [], "source": "w+disamb" }, { "_dis": "28 28 8 8 29", "kind": "other", "name": "Terms with Dutch translations", "parents": [], "source": "w+disamb" }, { "_dis": "31 31 5 5 28", "kind": "other", "name": "Terms with Finnish translations", "parents": [], "source": "w+disamb" }, { "_dis": "31 31 6 6 27", "kind": "other", "name": "Terms with German translations", "parents": [], "source": "w+disamb" } ], "glosses": [ "Any of various laws similar to De Morgan’s laws for set theory and logic; for example: ¬∀𝑥 𝑃(𝑥) ⇔ ∃𝑥 ¬𝑃(𝑥)" ], "id": "en-De_Morgan's_law-en-noun-v57V0I7R", "links": [ [ "mathematics", "mathematics" ] ], "raw_glosses": [ "(mathematics, loosely) Any of various laws similar to De Morgan’s laws for set theory and logic; for example: ¬∀𝑥 𝑃(𝑥) ⇔ ∃𝑥 ¬𝑃(𝑥)" ], "synonyms": [ { "_dis1": "6 6 7 7 73", "tags": [ "initialism" ], "word": "DM" } ], "tags": [ "broadly" ], "topics": [ "mathematics", "sciences" ] } ], "sounds": [ { "enpr": "dēmôrʹgĭnz.lô'", "tags": [ "US" ] }, { "ipa": "/dɨˈmɔɹɡɪnzˌlɔ/", "tags": [ "US" ] } ], "translations": [ { "_dis1": "41 41 6 6 6", "code": "cs", "lang": "Czech", "sense": "law of formal logic", "tags": [ "masculine" ], "word": "De Morganův zákon" }, { "_dis1": "41 41 6 6 6", "code": "nl", "lang": "Dutch", "sense": "law of formal logic", "tags": [ "feminine" ], "word": "wet van De Morgan" }, { "_dis1": "41 41 6 6 6", "code": "fi", "lang": "Finnish", "sense": "law of formal logic", "word": "De Morganin laki" }, { "_dis1": "41 41 6 6 6", "code": "de", "lang": "German", "sense": "law of formal logic", "tags": [ "neuter" ], "word": "De Morgen'sches Gesetz" }, { "_dis1": "41 41 6 6 6", "code": "pl", "lang": "Polish", "sense": "law of formal logic", "tags": [ "neuter" ], "word": "prawo De Morgana" }, { "_dis1": "6 6 34 34 21", "code": "cs", "lang": "Czech", "sense": "law of set theory", "tags": [ "masculine" ], "word": "De Morganův zákon" }, { "_dis1": "6 6 34 34 21", "code": "nl", "lang": "Dutch", "sense": "law of set theory", "tags": [ "feminine" ], "word": "wet van De Morgan" }, { "_dis1": "6 6 34 34 21", "code": "fi", "lang": "Finnish", "sense": "law of set theory", "word": "De Morganin laki" }, { "_dis1": "6 6 34 34 21", "code": "de", "lang": "German", "sense": "law of set theory", "tags": [ "neuter" ], "word": "De Morgen'sches Gesetz" }, { "_dis1": "6 6 34 34 21", "code": "pl", "lang": "Polish", "sense": "law of set theory", "tags": [ "neuter" ], "word": "prawo De Morgana" } ], "word": "De Morgan's law" }
{ "categories": [ "English countable nouns", "English entries with incorrect language header", "English eponyms", "English lemmas", "English multiword terms", "English nouns", "Entries with translation boxes", "Pages with 1 entry", "Pages with entries", "Terms with Czech translations", "Terms with Dutch translations", "Terms with Finnish translations", "Terms with German translations" ], "etymology_text": "Named after the British mathematician and logician Augustus De Morgan (1806–1871), who first formulated the laws in formal propositional logic.", "forms": [ { "form": "De Morgan's laws", "tags": [ "plural" ] } ], "head_templates": [ { "args": { "head": "De Morgan's law" }, "expansion": "De Morgan's law (plural De Morgan's laws)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ "English terms with quotations", "Quotation templates to be cleaned", "en:Logic", "en:Mathematics" ], "examples": [ { "ref": "2004 August, J. L. Schellenberg, “The Atheist’s Free Will Offence”, in International Journal for Philosophy of Religion, volume 56, № 1, pages 11-12:", "text": "Let ‘F’ stand for the state of affairs that consists in finite persons possessing and exercising free will. Let ‘p’ stand for ‘God exists’; ‘q’ for ‘F obtains’; ‘r’ for ‘F poses a serious risk of evil’; and ‘s’ for ‘There is no option available to God that counters F.’ With this in place, the argument may be formalized as follows:\n(1) [(p & q) & r] → s Premiss\n(2) ~s Premiss\n(3) ~[(p & q) & r] 1, 2 MT\n(4) ~(p & q) v ~r 3 DM\n(5) r Premiss\n(6) ~(p & q) 4, 5 DS\n(7) ~p v ~q 6 DM\n(3) follows from the conjunction of (1) and (2) by modus tollens; De Morgan’s law applied to (3) yields (4); (4) and (5) together lead to (6) by disjunctive syllogism; and another application of De Morgan’s law takes us from (6) to the final conclusion, according to which either God exists or there is free will (but not both).", "type": "quote" } ], "glosses": [ "Either of two laws in formal logic which state that:", "The negation of a conjunction is the disjunction of the negations; expressed in propositional logic as: ¬ (𝑝 ∧ 𝑞) ⇔ (¬ 𝑝) ∨ (¬ 𝑞)" ], "links": [ [ "mathematics", "mathematics" ], [ "logic", "logic" ], [ "logic", "logic#English" ], [ "negation", "negation#English" ], [ "conjunction", "conjunction#English" ], [ "disjunction", "disjunction#English" ] ], "raw_glosses": [ "(mathematics, logic) Either of two laws in formal logic which state that:", "The negation of a conjunction is the disjunction of the negations; expressed in propositional logic as: ¬ (𝑝 ∧ 𝑞) ⇔ (¬ 𝑝) ∨ (¬ 𝑞)" ], "topics": [ "human-sciences", "logic", "mathematics", "philosophy", "sciences" ] }, { "categories": [ "en:Logic", "en:Mathematics" ], "glosses": [ "Either of two laws in formal logic which state that:", "The negation of a disjunction is the conjunction of the negations; expressed in propositional logic as: ¬ (𝑝 ∨ 𝑞) ⇔ (¬ 𝑝) ∧ (¬ 𝑞)" ], "links": [ [ "mathematics", "mathematics" ], [ "logic", "logic" ], [ "logic", "logic#English" ] ], "raw_glosses": [ "(mathematics, logic) Either of two laws in formal logic which state that:", "The negation of a disjunction is the conjunction of the negations; expressed in propositional logic as: ¬ (𝑝 ∨ 𝑞) ⇔ (¬ 𝑝) ∧ (¬ 𝑞)" ], "topics": [ "human-sciences", "logic", "mathematics", "philosophy", "sciences" ] }, { "categories": [ "en:Mathematics" ], "glosses": [ "Either of two laws in set theory which state that:", "The complement of a union is the intersection of the complements; as expressed by: (𝐴 ∪ 𝐵)′ = 𝐴′ ∩ 𝐵′" ], "links": [ [ "mathematics", "mathematics" ], [ "set theory", "set theory#English" ], [ "complement", "complement#English" ], [ "union", "union#English" ], [ "intersection", "intersection#English" ] ], "raw_glosses": [ "(mathematics) Either of two laws in set theory which state that:", "The complement of a union is the intersection of the complements; as expressed by: (𝐴 ∪ 𝐵)′ = 𝐴′ ∩ 𝐵′" ], "topics": [ "mathematics", "sciences" ] }, { "categories": [ "en:Mathematics" ], "glosses": [ "Either of two laws in set theory which state that:", "The complement of an intersection is the union of the complements; as expressed by: (𝐴 ∩ 𝐵)′ = 𝐴′ ∪ 𝐵′" ], "links": [ [ "mathematics", "mathematics" ], [ "set theory", "set theory#English" ] ], "raw_glosses": [ "(mathematics) Either of two laws in set theory which state that:", "The complement of an intersection is the union of the complements; as expressed by: (𝐴 ∩ 𝐵)′ = 𝐴′ ∪ 𝐵′" ], "topics": [ "mathematics", "sciences" ] }, { "categories": [ "en:Mathematics" ], "glosses": [ "Any of various laws similar to De Morgan’s laws for set theory and logic; for example: ¬∀𝑥 𝑃(𝑥) ⇔ ∃𝑥 ¬𝑃(𝑥)" ], "links": [ [ "mathematics", "mathematics" ] ], "raw_glosses": [ "(mathematics, loosely) Any of various laws similar to De Morgan’s laws for set theory and logic; for example: ¬∀𝑥 𝑃(𝑥) ⇔ ∃𝑥 ¬𝑃(𝑥)" ], "tags": [ "broadly" ], "topics": [ "mathematics", "sciences" ] } ], "sounds": [ { "enpr": "dēmôrʹgĭnz.lô'", "tags": [ "US" ] }, { "ipa": "/dɨˈmɔɹɡɪnzˌlɔ/", "tags": [ "US" ] } ], "synonyms": [ { "tags": [ "initialism" ], "word": "DM" } ], "translations": [ { "code": "cs", "lang": "Czech", "sense": "law of formal logic", "tags": [ "masculine" ], "word": "De Morganův zákon" }, { "code": "nl", "lang": "Dutch", "sense": "law of formal logic", "tags": [ "feminine" ], "word": "wet van De Morgan" }, { "code": "fi", "lang": "Finnish", "sense": "law of formal logic", "word": "De Morganin laki" }, { "code": "de", "lang": "German", "sense": "law of formal logic", "tags": [ "neuter" ], "word": "De Morgen'sches Gesetz" }, { "code": "pl", "lang": "Polish", "sense": "law of formal logic", "tags": [ "neuter" ], "word": "prawo De Morgana" }, { "code": "cs", "lang": "Czech", "sense": "law of set theory", "tags": [ "masculine" ], "word": "De Morganův zákon" }, { "code": "nl", "lang": "Dutch", "sense": "law of set theory", "tags": [ "feminine" ], "word": "wet van De Morgan" }, { "code": "fi", "lang": "Finnish", "sense": "law of set theory", "word": "De Morganin laki" }, { "code": "de", "lang": "German", "sense": "law of set theory", "tags": [ "neuter" ], "word": "De Morgen'sches Gesetz" }, { "code": "pl", "lang": "Polish", "sense": "law of set theory", "tags": [ "neuter" ], "word": "prawo De Morgana" } ], "word": "De Morgan's law" }
Download raw JSONL data for De Morgan's law meaning in All languages combined (6.4kB)
This page is a part of the kaikki.org machine-readable All languages combined dictionary. This dictionary is based on structured data extracted on 2025-01-25 from the enwiktionary dump dated 2025-01-20 using wiktextract (c15a5ce and 5c11237). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.